M1.
(Diameter or side of square $=$) $\sqrt{36}$ or 6 or (radius $=$) 3

$$
6 \times 6(=36)
$$

$\pi \times 6$
or $2 \times \pi \times 3$
$[18.8,18.9]$ or 6π
Accept 19 with working shown

Additional Guidance

Accept [3.14, 3.142] for π
Ignore further working after 6π, that is if they incorrectly work 6π out award full marks
Do not accept $\pi 6$ for the A mark
6 or 3 may be on diagram but must be correct, e.g. radius must be 3 , not 6

M2.

Alternative method 1

10×12 or 120
or $\frac{1}{2} \times 10 \times(18-12)$ or 30
oe
10×12 or 120
and $\frac{1}{2} \times 10 \times(18-12)$ or 30
oe

150
10×18 or 180
or $\frac{1}{2} \times 5 \times(18-12)$ or 15
or $\frac{1}{2} \times 5 \times(18-12) \times 2$ or 30
oe
10×18 or 180
and $\frac{1}{2} \times 5 \times(18-12) \times 2$ or 30
oe

150

Alternative method 3
$\frac{1}{2}(12+18) \times 5$
oe
$\frac{1}{2}(12+18) \times 5 \times 2$ or 75
$o e$

150
A1
[3]

M3.
1 gallon $=4.5$ litres stated or implied
e.g. their $144 \div 4.5$
$40 \times 40 \times 90$ or 144000
their $144000 \div 1000$ or 144

32

Additional Guidance

Note: use of 1 litre $=1.75$ pints implies answer 31.5

M4.
12
their 12×1000 or 12000
or $1.25 \times 60(\times 60)$ or 75 or 4500
or their $12 \div 1.25$ or 9.6
or $1000 \div 1.25$ or 800
or $1.25 \div 1000$ or 0.00125
oe
their $12000 \div$ their 75
or their $12000 \div 1.25$
or their $12 \div$ their 0.00125
or their 9.6×1000
or their $12 \times$ their 800 or 9600
or their $800 \div 60(\div 60)$
or 13.3(...) or 0.2(...)
or their 12×1000 and $1.25 \times 60(\times 60)$
or their 12×1000 and their $75(\times 60)$
or their 12000 and their 4500
oe

or 2.66(...) or 2.67

oe

2 hours 40 minutes

Additional Guidance

160 or $2.66(\ldots)$ or 2.67 implies 4 marks

2 hours 66 minutes implies 2.66
their 12 is their volume

M5.(a) Either correct rectangle drawn
$A, B,(7,2)$ and $(3,2)$
or $A, B,(7,8)$ and $(3,8)$
(ignore labels)
B1 for $(7,2)$ and $(3,2)$ plotted
or for $(7,8)$ and $(3,8)$ plotted
B1 for any rectangle with area $12 \mathrm{~cm}^{2}$
$B 1$ for any rectangle with vertices A and B.
(b) $\quad C(7,2)$ and $D(3,2)$
or $C(7,8)$ and $D(3,8)$
B1 for correct coordinates with incorrect order ie D and C reversed
ft their rectangle or square $A B C D$ for up to B2
ft their rectangle or square $A B D C$ for up to B1

M6.(a) $26 \div 4$ or 6.5

$$
\text { or } 26 \times 20 \times \frac{1}{4} \quad \text { or } 130
$$

26 - their 6.5
or $26 \div 4 \times 3$
or $(520-130) \div 20$ or $390 \div 20$
or (520 - their 130) $\div 20$
or their $390 \div 20$
oe
19.5
(b) Any trial with correct factors giving 168 except 1×168
or any correctly evaluated product
such that $10 \leq$ rows ≤ 13 and
$10 \leq$ seats ≤ 16

$$
\begin{aligned}
& 2(x) 84 \text { or } 168 \div 2=84 \\
& 3(x) 56 \text { or } 168 \div 3=56 \\
& 4(x) 42 \text { or } 168 \div 4=42 \\
& 6(x) 28 \text { or } 168 \div 6=28 \\
& 7(x) 24 \text { or } 168 \div 7=24 \\
& 8(x) 21 \text { or } 168 \div 8=21 \\
& 12(x) 14 \text { or } 168 \div 12=14 \\
& \text { oe }
\end{aligned}
$$

A different trial with correct factors giving 168 except 1×168
or a different correctly evaluated
product such that $10 \leq$ rows ≤ 13 and
$10 \leq$ seats ≤ 16

12 rows
SC2 for 12 seats and 14 rows
14 seats
SC2 for 12 and 14 as final working

M7. $\sqrt{64}$ or 8 seen
$5 x-2=$ their 8
or $9-y=$ their 8
$x=2$
$y=1$

$$
\begin{aligned}
& \text { SC2 for } x=13.2 \text { and } y=-55 \\
& \text { SC1 for } x=13.2 \text { or } y=-55
\end{aligned}
$$

Alternative Method

$$
(5 x-2)(9-y)=64
$$

$$
\begin{aligned}
& 5 x-2=9-y \\
& \text { or } y=9-(5 x-2)
\end{aligned}
$$

oe
$(5 x-2)(9-(5 x-2))=64$
or $(5 x-2)^{2}=64$
or $25 x^{2}-20 x-60=0$
or $x=2$
$o e$

$$
x=2 \text { and } y=1
$$

M8.(a)

Drawings can be anywhere on the grids B1 for shapes reversed or B1 for one correct
(b) $6 \times 2+3$

$$
\text { or } 4+7+4
$$

$$
\text { or } 2+2+2+2+7
$$

or 28
or 13

15

$$
\text { SC1 for } 17
$$

$\begin{array}{ll} & \text { SC1 for } 17 \\ \text { M9.6 by } 4 \text { rectangle } & \begin{array}{l}\text { B1 for a rectangle with perimeter } 20 \mathrm{~cm} \\ \text { B1 for a rectangle with area } 24 \mathrm{~cm}^{2}\end{array}\end{array}$

$$
\text { B1 for a rectangle with perimeter } 20 \mathrm{~cm}
$$

$$
\text { M10.(a) } \frac{15+30}{2} \times 20
$$

$$
450
$$

(b) their 450×95

42750
ft their 450
A1ft

M11.
Area of rectangle $=24$ squares
Can be on diagram

Evidence of counting whole and part squares for irregular shape or area of B [34, 39] stated or clear indication of 24 whole squares plus parts e.g. rectangle drawn '24+' is not sufficient.

Correct conclusion that shape B is larger and a statement that area of B is larger than 24 either implicitly or explicitly,

Strand (iii)
ft if B1 awarded, 2 areas stated and a correct conclusion for those areas.

Q1ft

M12.
(a) $3, \times 3$, 'times 3 ', ' $1: 3$ '

Ignore units
(b) Alternative method 1

2 and 18 seen
Can be seen in a subtraction or on diagram

9

Alternative method 2

3^{2}
ft their sf 3×3

9

M13.
4×5 rectangle
B1 for a rectangle with perimeter 18 cm
B1 for a rectangle with area $20 \mathrm{~cm}^{2}$

M14.

(a) $6 \times 12 \times 9$
oe

648
cm ${ }^{3}$
(b) Finds 3 as the HCF or $3 \times 4,3 \times 3,3 \times 2$
$2 \times 4 \times 3$
Their $648 \div 3^{3}$ or their $648 \div 27$

24
SC2 81 if $2 \times 2 \times 2$ cube used, could be implied by $648 \div 8$

